Inequalities of Hardy-Littlewood-Polya Type for Functions of Operators and Their Applications
نویسندگان
چکیده
In this paper, we derive a generalized multiplicative Hardy-LittlewoodPolya type inequality, as well as several related additive inequalities, for functions of operators in Hilbert spaces. In addition, we find the modulus of continuity of a function of an operator on a class of elements defined with the help of another function of the operator. We then apply the results to solve the following problems: (i) the problem of approximating a function of an unbounded self-adjoint operator by bounded operators, (ii) the problem of best approximation of a certain class of elements from a Hilbert space by another class, and (iii) the problem of optimal recovery of an operator on a class of elements given with an error.
منابع مشابه
General Hardy-Type Inequalities with Non-conjugate Exponents
We derive whole series of new integral inequalities of the Hardy-type, with non-conjugate exponents. First, we prove and discuss two equivalent general inequa-li-ties of such type, as well as their corresponding reverse inequalities. General results are then applied to special Hardy-type kernel and power weights. Also, some estimates of weight functions and constant factors are obtained. ...
متن کاملNote on the Converses of Inequalities of Hardy and Littlewood
The inequalities of Hardy–Littlewood type play very important role in many theorems concerning convergence or summability of orthogonal series. In the applications many times their converses are also very useful. Both the original inequalities and their converses have been generalized in several directions by many authors, among others Leindler (see [5], [6], [7], [8]), Mulholland (see [10]), C...
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملThe Hardy-landau-littlewood Inequalities with Less Smoothness
One proves Hardy-Landau-Littlewood type inequalities for functions in the Lipschitz space attached to a C0-semigroup (or to a C 0 -semigroup).
متن کامل